学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2019-11-26 阅读次数:149次
报告题目: The two-term Weyl formulas for some Euclidean domains
报 告 人:郭经纬 特任研究员
报告人所在单位:中国科学技术大学
报告日期:2019-11-26 星期二
报告时间:15:30
报告地点:光华东主楼1801
  
报告摘要:

      One of the most important objects in spectral geometry is the eigenvalue counting function, say, for the Dirichlet Laplacian associated with planar domains. The simplest examples of such domains might be squares, disks, annuli, etc. It is well-known that for each of these domains its eigenvalue counting function has an asymptotics containing two main terms and a remainder of size $o(\mu)$. (Such an asymptotics is usually called Weyl's law.) To improve the estimate of the remainder term had been one of the most attractive problems in spectral geometry for decades.

      In this talk I will introduce background and explain how to transfer the above problem into problems of counting lattice points, to which tools from analysis and analytic number theory can be applied. In particular I will mention our recent work for planar annuli and balls in high dimensions, joint with Wolfgang Mueller, Weiwei Wang and Zuoqin Wang.

海报

  
本年度学院报告总序号:251

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073