学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2019-12-17 阅读次数:412次
报告题目: Relaxed Euler systems and convergence to Navier-Stokes equations
报 告 人:Prof. Yue-Jun Peng
报告人所在单位:Université Clermont Auvergne, France
报告日期:2019-12-17 星期二
报告时间:10:00-11:00
报告地点:光华东主楼1501
  
报告摘要:
Consider the approximation of Navier-Stokes equations for a Newtonian fluid by Euler type systems with relaxation. This requires to decompose the second-order derivative terms of the velocity into first-order terms. We use Hurwitz-Radon matrices for this decomposition. We prove the convergence of the approximate systems to the Navier-Stokes equations locally in time for smooth initial data and globally in time for initial data near constant equilibrium states.
 
  
本年度学院报告总序号:254

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073