学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2019-11-26 阅读次数:90次
报告题目: Structure-preserving schemes for PDEs with dynamic boundary conditions
报 告 人:Makoto Okumura
报告人所在单位:Osaka University, Japan
报告日期:2019-11-26 星期二
报告时间:14:30-15:30
报告地点:光华东主楼2001
  
报告摘要:
In this talk, we consider a Cahn-Hilliard equation with dynamic boundary condition (Fukao Yoshikawa & Wada 2017). For this system, we propose a structure-preserving scheme using the discrete variational derivative method. In this method, how to discretize the energy which characterizes the equation is essential. Modifying the conventional manner and using appropriate summation-by-parts formula, we can use a standard central difference operator as an approximation of an outward normal derivative on the discrete boundary condition of the scheme. Furthermore, we prove the L∞-boundedness, the existence and uniqueness of the solution for the proposed scheme, and the error estimate. Also, we propose structure-preserving schemes for the Allen-Cahn equation with a dynamic boundary condition and the GMS model (Goldstein, Miranville & Schimperna 2011).
 
  
本年度学院报告总序号:256

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073