英文名:KOROBKOV Mikhail
职称:教授(博士生导师)
办公室:2117
办公电话:021-55665561
E-mail:korob AT math.nsc.ru
研究方向:偏微分方程(partial differential equation), Mathematical analysis, Morse--Sard theorem, Navier--Stokes equations
主讲课程:Sobolev spaces.
代表论著:
[1] M.V. Korobkov, K. Pileckas and R. Russo (2015): Solution of Leray's problem for stationary Navier-Stokes equations in plane and axially symmetric spatial domains, Annals of Math., 181, no. 2, 769-807.
http://dx.doi.org/10.4007/annals.2015.181.2.7
[2] Bourgain J., Korobkov M. V., Kristensen J. (2015): On the Morse– Sard property and level sets of Wn,1 Sobolev functions on Rn, Journal fur die reine und angewandte Mathematik (Crelles Journal), 2015, No. 700, 93–112.
http://dx.doi.org/10.1515/crelle-2013-0002
[3]Korobkov M.V., Pileckas K., Russo R. (2018): The existence theorem for the steady Navier-Stokes problem in exterior axially symmetric 3D domains, Math. Ann., 370, no. 1-2, p.727-784.
https://doi.org/10.1007/s00208-017-1555-x
[4] M.V. Korobkov, K. Pileckas and R. Russo (2019): On convergence of arbitrary D-solution of steady Navier-Stokes system in 2D exterior domains, Arch. Rational Mech. Anal., 233, no. 1, p. 385-407.
http://doi.org/10.1007/s00205-019-01359-8
[5] Ferone A., Korobkov M.V., Roviello A., (2019): On the Luzin N-property and the uncertainty principle for Sobolev mappings, Analysis and PDEs, 12,no. 5, p.1149-1175. http://doi.org/10.2140/apde.2019.12.1149