学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2017-04-27 阅读次数:119次
报告题目: Restrictions for solutions of the heat equations with Newton-Sobolev data on metric measure spaces
报 告 人: 袁文 教授
报告人所在单位: 北京师范大学
报告日期:2017-04-27 星期四
报告时间:10:00-11:00
报告地点:光华东主楼1501
  
报告摘要:

On a complete doubling metric measure space $(X,d,\mu)$ supporting the weak Poincaré inequality, by  establishing some capacitary strong-type inequalities for the Hardy-Littlewood maximal operator, we characterize the measure $\nu$ on the space $X\times(0,\infty)$ so that the mapping $f\mapsto \int_{X} p_{t}(\cdot,y)f(y) d\mu(y)$, is bounded from the Newton-Sobolev space $N^{1,p}(X)$ with $p\in [1,\infty)$ into the Lebesgue space $L^q(X\times(0,\infty),\nu)$ with $q\in(0,\infty)$, where the kernels $p_t$  are some generalized heat kernels. This result generalizes the Carleson embeddings obtained in [J. Differential Equations 224 (2006), 277-295], and also provides a priori estimate of the solution of heat equations with Newton-Sobolev data on many metric measure spaces $X$ such as complete Riemannian manifolds and fractals.

海报

  
本年度学院报告总序号:59

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073