学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2017-06-21 阅读次数:118次
报告题目: Artin’s conjecture for abelian varieties Ⅲ
报 告 人:Prof. Cristian Virdol
报告人所在单位:Yonsei University
报告日期:2017-06-21 星期三
报告时间:14:00-15:00
报告地点:光华东主楼2201
  
报告摘要:

Artin's primitive root conjecture (1927) states that, for any integer $a\neq\pm1$ or a perfect square, there are infinitely many primes $p$ for which $a$ is a primitive root (mod $p$). This conjecture is not known for any specific $a$. I will prove the equivalent of this conjecture unconditionally for general abelian varieties for all $a$. Moreover, under GRH, I will prove the strong form of Artin's conjecture (1927) for abelian varieties, i.e. I will prove the density and the asymptotic formula for the primitive primes. 

海报

  
本年度学院报告总序号:132

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073