学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2017-06-23 阅读次数:415次
报告题目: 数学所综合报告: Minkowski problems in convex geometry
报 告 人:Prof. Gaoyong Zhang
报告人所在单位:New York University
报告日期:2017-06-23 星期五
报告时间:10:00-11:00
报告地点:光华东主楼1801
  
报告摘要:

Given a measure on the unit sphere, the classical Minkowski problem in convex geometry asks for necessary and sufficient conditions in order to construct a convex body in the Euclidean space whose surface area measure (or Gauss curvature when the measure has a density) is equal to the given measure. The partial differential equation associated with the Minkowski problem is a Monge-Ampere equation with measure data. We discuss unsolved major Minkowski problems for geometric measures in convex geometry, and mention recent breakthroughs in solving Minkowski problems via measure concentration conditions.

海报

 

  
本年度学院报告总序号:134

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073