学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2018-07-31 阅读次数:290次
报告题目: MINIMAL DEGREE H(curl) AND H(div) CONFORMING FINITE ELEMENTS ON POLYTOPAL MESHES
报 告 人:汪艳秋 教授
报告人所在单位:南京师范大学
报告日期:2018-07-31 星期二
报告时间:9:00-11:00
报告地点:光华东主楼1801
  
报告摘要:

We construct H(curl) and H(div) conforming finite elements on convex polygons and polyhedra with minimal possible degrees of freedom, i.e., the number of degrees of freedom is equal to the number of edges or faces of the polygon/polyhedron. The construction is based on generalized barycentric coordinates and the Whitney forms. In 3D, it currently requires the faces of the polyhedron be either triangles or parallelograms. Formulas for computing basis functions are given. The finite elements satisfy discrete de Rham sequences in analogy to the well-known ones on simplices. Moreover, they reproduce existing H(curl)-H(div) elements on simplices, parallelograms, parallelepipeds, pyramids and triangular prisms. The approximation property of the constructed elements is also analyzed by showing that the lowest-order simplicial N´ed´elec-Raviart-Thomas elements are subsets of the constructed elements on arbitrary polygons and certain polyhedra.

海报

  
本年度学院报告总序号:193

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073