学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2018-08-08 阅读次数:240次
报告题目: On Hypersurfaces in Hyperbolic Space
报 告 人:庆杰教授
报告人所在单位:美国加州大学,Santa Cruz分校
报告日期:2018-08-08 星期三
报告时间:10:30-11:30
报告地点:光华东主楼2001
  
报告摘要:

In this talk I will report our recent works on convex hypersurfaces in hyperbolic space. To study hypersurfaces in hyperbolic space analytically, one needs to find ways to parametrize it, preferably globally. We consider two parametrizations: vertical graph and hyperbolic Gauss map. To get a global parametrization, one needs understand the interrelation of convexity and embeddedness. It is also important to understand the asymptotic of the geometry at ends. In this talk I will report some of our recent works on global and asymptotic properties of hypersurfaces with nonnegative sectional curvature or Ricci curvature in hyperbolic space, where our use of n-Laplace equations seems to be new.

 



  
本年度学院报告总序号:199

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073