学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2018-08-20 阅读次数:203次
报告题目: Some ergodic properties of geodesic flows on rank one manifolds without focal points
报 告 人:吴伟胜 副教授
报告人所在单位:中国农业大学
报告日期:2018-08-20 星期一
报告时间:15:00-16:00
报告地点:光华东主楼1801
  
报告摘要:

Manifolds without focal points are natural generalizations of those of nonpositive curvature. The geodesic flows on rank one manifolds without focal points are classical examples of non-uniformly hyperbolic dynamical systems. The uniqueness of the measure of maximal entropy (MME) for geodesic flows on rank one manifolds of nonpositive curvature was conjectured by A. Katok in 1985 and proved by G. Knieper in 1998. We present how Knieper’s construction of MME via Patterson-Sullivan densities can be extended to the no focal points case. We also discuss the ergodicity of geodesic flows on rank one manifolds without focal points with respect to the Liouville measure.

海报

 

  
本年度学院报告总序号:201

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073