学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2018-09-04 阅读次数:85次
报告题目: Quasi-extremal distance constant and boundary quasiconformal reflection constant in R^n
报 告 人:Tao Cheng
报告人所在单位:East China Normal University
报告日期:2018-09-04 星期二
报告时间:16:00-17:00
报告地点: Room 102, Shanghai Center for Mathematical Sciences
  
报告摘要:

This talk is devoted to some fundamental problems on quasi-extremal distance constant, modulus of curve families, n-harmonic function and their relations to nonlinear degenerate elliptic equation. We obtain the existence, uniqueness and boundary behavior of the extremal function for the capacity of a capacitor in R^n. Furthermore, we get a decomposition for the extremal length of curve family joining two disjoint continua in R^n. With the help of results mentioned above, we finally establish a sharp upper bound for the quasi-extremal distance constant of a domain in terms of its local boundary quasiconformal reflection constant.


海报

  
本年度学院报告总序号:211

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073