学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2018-11-07 阅读次数:138次
报告题目: The number of spanning trees in circulant graphs, its arithmetic properties and asymptotic
报 告 人:Prof. Alexander Mednykh
报告人所在单位:Sobolev Institute of Mathematics, Novosibirsk State University
报告日期:2018-11-07 星期三
报告时间:15:00-16:00
报告地点:光华东主楼1801
  
报告摘要:

In this paper, we develop a new method to produce explicit formulas for the number τ(n) of spanning trees in the undirected circulant graphs Cn(s1, s2, . . . , sk) and C2n(s1, s2, . . . , sk, n). Also, we prove that in both cases the number of spanning trees can be represented in the form τ(n) = p n a(n)2, where a(n) is an integer sequence and p is a prescribed natural number depending on the parity of n. Finally, we find an asymptotic formula for τ(n) through the Mahler measure of the associated Laurent polynomial L(z)=2k-_(i=1)^k(z^(s_i )+z^(-s_i )).

海报

  
本年度学院报告总序号:239

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073