学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2019-01-10 阅读次数:190次
报告题目: Higher rho numbers
报 告 人:Paolo Piazza教授
报告人所在单位:Sapienza Universita` di Roma
报告日期:2019-01-10 星期四
报告时间:16:00-17:00
报告地点:光华东主楼1801
  
报告摘要:

In this talk I will present recent results obtained in collaboration with Thomas Schick and
Vito Felice Zenobi.
The rho class of an invertible operator on a Galois $\Gamma$-covering is a very
interesting and useful secondary invariant. There are different equivalent definitions
of the rho class (Higson-Roe, Piazza-Schick, Xie-Yu, Zenobi) but in all of them the rho class is
a class in the K-theory of a suitable C^*-algebra. Work of Higson-Roe, Benameur-Roy
and Xie-Yu shows that the usual numeric rho invariants (the APS rho invariant, the
Cheeger-Gromov rho invariant and the Lott delocalised eta invariant) can be obtained from
the rho class by applying suitable traces.
In this talk I will address the problem of pairing the rho class class with higher cyclic cocycles,thus producing higher rho numbers.

海报

 
  
本年度学院报告总序号:16

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073