学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2019-07-05 阅读次数:201次
报告题目: Li-Yau inequality under CD(0,n) on finite graphs for a modified heat equation
报 告 人:Florentin Münch
报告人所在单位:Max Planck Institute for Mathematics in the Sciences (MPI MiS)
报告日期:2019-07-05 星期五
报告时间:13:30-14:30
报告地点:光华东主楼1704
  
报告摘要:

We introduce a modified heat equation which coincides with the the logarithmic heat equation on manifolds but not on graphs due to the lack of the chain rule. For the modified heat equation, we prove a gradient decay and Li-Yau inequality implying Harnack inequality. Although the modified heat equation does not coincide with the heat semigroup, we can give upper and lower bounds by which we can give a volume doubling constant depending only on the dimension and the vertex degree.

海报

  
本年度学院报告总序号:154

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073