学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2020-01-10 阅读次数:1084次
报告题目: Topological recursions for Masur-Veech volumes
报 告 人:Gaetan Borot
报告人所在单位:Max Planck Institute for Mathematics, Bonn
报告日期:2020-01-10 星期五
报告时间:10:00-11:00
报告地点:光华东主楼1801
  
报告摘要:
Masur and Veech constructed a natural measure with finite mass on the moduli space of meromorphic quadratic differentials of area one with n simple poles on a smooth complex curve of genus g. I will explain that they can be computed by two different topological recursions (i.e. recursions on 2g - 2 + n). The first one exploits the relation of Masur-Veech volumes with asymptotic statistics of simple geodesics on hyperbolic surfaces and the theory of the geometric recursion that I developed with Andersen and Orantin (joint work with Andersen, Charbonnier, Delecroix, Giacchetto, Lewanski, Wheeler). The second one relies on the recent work of Chen, Moeller and Sauvaget who expressed Masur-Veech volumes as the top intersection of a modification of Chiodo's class, and follows from general properties of the topological recursion (joint work with Giacchetto and Lewanski).
 
  
本年度学院报告总序号:3

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073