学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2020-07-01 阅读次数:103次
报告题目: Universality class of the Brownian net
报 告 人:俞锦炯 博士
报告人所在单位:上海纽约大学
报告日期:2020-07-01 星期三
报告时间:15:00-16:00
报告地点:腾讯会议ID: 738 142 967
  
报告摘要:

   The Brownian net, roughly speaking, is a collection of branching-coalescing Brownian motions starting from every point in the space-time plane R^2, which has been shown to be the diffusive scaling limit of branching-coalescing simple random walks. The Brownian net is expected to be a universal scaling limit of one-dimensional interacting particle systems with branching-coalescence. However, showing the convergence of models with crossing paths remains a challenge.  We study the model of branching-coalescing nonsimple random walks, where the paths can cross each other. A key ingredient is the duality between the branching-coalescing random walks and the biased voter model. We obtain results for both the Brownian net and the biased voter models.

 

海报

  
本年度学院报告总序号:82

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073