学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2020-09-06 阅读次数:321次
报告题目: On Hausdorff dimension of the set of nonergodic directions
报 告 人:黄炎
报告人所在单位:河南大学
报告日期:2020-09-06 星期日
报告时间:10:00-11:00
报告地点:腾讯会议ID: 656 940 706
  
报告摘要:

In this talk, we show a recent progress about Hausdorff dimension of the set of nonergodic directions. Let X be the resulting surface by gluing two copies of the flat torus along a segment with holonomy vector (lambda,mu) and let q_k be the sequence of best simultaneous approximation denominators to (lambda,mu),related to any norm of R^2. If q_{k+1}=O(q_k^N) for some N>0, then the set of nonergodic directions in X has Hausdorff dimension 1/2; if \sum(loglogq_{k+1})/q_k=infty, then the dimension is 0. This was a joint work with Yitwah Cheung.

 

海报

  
本年度学院报告总序号:136

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073