学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2020-10-20 阅读次数:113次
报告题目: On ill- and well-posedness of dissipative martingale solutions to stochastic 3d euler equations
报 告 人:朱湘禅 副研究员
报告人所在单位:中科院应用数学所
报告日期:2020-10-20 星期二
报告时间:10:00-11:00
报告地点:腾讯会议ID: 171 860 865
  
报告摘要:

    We are concerned with the question of well-posedness of stochastic three dimensional incompressible Euler equations. In particular, we introduce a novel class of dissipative solutions and show that (i) existence; (ii) weak–strong uniqueness; (iii) non-uniqueness in law; (iv) existence of a strong Markov solution; (v) non-uniqueness of strong Markov solutions; all hold true within this class. Moreover, as a byproduct of (iii) we obtain existence and non-uniqueness of proba-bilistically strong and analytically weak solutions defined up to a stopping time and satisfying an energy inequality.

 

海报

 

  
本年度学院报告总序号:197

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073