学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2020-11-25 阅读次数:221次
报告题目: Hankel operators and Calderon-Zygmund commutators in Lorentz and weak classes.
报 告 人:张根凯 教授
报告人所在单位:瑞典 Chalmers University of Technology
报告日期:2020-11-25 星期三
报告时间:16:00-17:00
报告地点:腾讯会议ID: 452 244 321, 密码: 808080
  
报告摘要:

We study Hankel operators and CZ commutators in Lorentz and weak trace classes. It is known that for Hankel operators on Bergman space on the unit disk the two classes coincide.  We construct examples of CZ commutators on the torus which are in the weak trace ideal but not in the Lorentz ideal. We consider similar questions for Hankel operators on the Bergman and Hardy spaces on the unit ball. (Joint work with M. Goffeng, A. Usachev.)

海报

  
本年度学院报告总序号:279

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073