学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2020-11-24 阅读次数:89次
报告题目: A rescaled expansiveness for flows
报 告 人:文晓
报告人所在单位:北京航空航天大学
报告日期:2020-11-24 星期二
报告时间:14:00-15:00
报告地点:腾讯会议 ID:852 4566 4051
  
报告摘要:

We introduce a new version of expansiveness for flows. Let $M$ be a compact Riemannian manifold without boundary and $X$ be a $C^1$ vector field on $M$ that generates a flow $\varphi_t$ on $M$.  We call $X$ {\it rescaling expansive} on a compact invariant set $\Lambda$ of $X$ if for any $\epsilon>0$ there is $\delta>0$ such that, for any $x,y\in \Lambda$ and any time reparametrization $\theta:\mathbb{R}\to \mathbb{R}$, if $d(\varphi_t(x),\varphi_{\theta(t)}(y))\le \delta\|X(\varphi_t(x))\|$ for all $t\in \mathbb R$, then $\varphi_{\theta(t)}(y)\in \varphi_{[-\epsilon, \epsilon]}(\varphi_t(x))$ for all $t\in \mathbb R$. We prove that every multisingular hyperbolic set (singular hyperbolic set in particular) is rescaling expansive and a converse holds generically. Other definitions of expansiveness of flows and their relationships are also introduced.

海报

  
本年度学院报告总序号:295

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073