学术报告|
当前位置:首页 > 科研 > 学术报告
发表时间:2021-01-11 阅读次数:388次
报告题目: Isospectral flows related to Frobenius-Stickelberger-Thiele polynomials
报 告 人:常向科
报告人所在单位:中国科学院数学与系统科学研究院
报告日期:2021-01-11 星期一
报告时间:13:30--14:30
报告地点:腾讯会议 ID: 875 673 248
  
报告摘要:

We introduce two isospectral deformations related to the Frobenius-Stickelberger-Thiele (FST) polynomials. On one hand, for a specific choice of the deformation of the spectral measure, one is led to an integrable lattice (FST lattice), which is indeed an isospectral flow connected with a generalized eigenvalue problem. On the other hand, the spectral problem pertainning to the modified Camassa-Holm (mCH) peakon lattice can be interpreted in terms of the FST polynomials together with the associated FST polynomials, resulting in a map from the mCH peakon lattice to a negative flow of the finite FST lattice.

海报

  
本年度学院报告总序号:14

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465  

电话:+86(21)65642341 传真:+86(21)65646073