Abstract: We examine the classical problem of ranking a set of players on the basis of a set of pairwise comparisons arising from a sports tournament, with the objective of minimizing the total number of upsets, where an upset occurs if a higher ranked player was actually defeated by a lower ranked player. This problem can be rephrased as the so-called minimum feedback arc set problem on tournaments, which arises in a rich variety of applications and has been a subject of extensive research. We study this NP-hard problem using structure-driven and linear programming approaches.

Let \(T = (V, A) \) be a tournament with a nonnegative integral weight \(w(e) \) on each arc \(e \). A subset \(F \) of arcs is called a feedback arc set if \(T \setminus F \) contains no cycles (directed). A collection \(C \) of cycles (with repetition allowed) is called a cycle packing if each arc \(e \) is used at most \(w(e) \) times by members of \(C \). We call \(T \) cycle Mengerian if, for every nonnegative integral function \(w \) defined on \(A \), the minimum total weight of a feedback arc set is equal to the maximum size of a cycle packing. In this talk, we will discuss the characterization that a tournament is cycle Mengerian if and only if it contains none of four Möbius ladders as a subgraph. (Joint work with Guoli Ding, Wenan Zang, and Qiulan Zhao.)