导航
学术报告|
当前位置:首页  科研  学术报告
报告题目: Periodicities in chromatic homotopy theory at prime 2
报 告 人: 李谷川
报告人所在单位: Max Planck Institute for Mathematics
报告日期: 2023-01-06
报告时间: 11:00—11:40
报告地点: Tencent meeting: 922-819-862
   
报告摘要:

Chromatic homotopy theory uses the algebraic geometry of smooth 1-parameter formal groups to separate stable homotopy theory into periodic layers. The 1st layer recovers the image of Adams J homomorphism and the real Bott periodicity of the real topological K-theory KO. In this talk, I will present a generalization of the real Bott periodicity of KO to general layers at prime 2. The proof takes inspiration from the breakthroughs of HillHopkinsRavenels solution to Kervaire invariant one problem. This is based on joint works with Zhipeng Duan, XiaoLin Danny Shi, Guozhen Wang, and Zhouli Xu.

学术海报4.pdf

   
本年度学院报告总序号: 713

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465