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Abstract

The goal of this lecture series is to give an overview of some recent results and new direc-
tions in continuum fluid dynamics. After a brief introduction of the basic system of balance
laws, we focus on two iconic examples: The Navier–Stokes(–Fourier) system describing the
motion of a general compressible viscous and heat conducting fluid, and the Euler system
describing the motion of a perfect fluid, where dissipation effects are neglected.
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1 Lecture 1: Fluid equations in the framework of contin-

uum mechanics

Field equations in fluid mechanics: Conservation/balance law, strong and weak formulation. Con-
stitutive equations. The Navier–Stokes and Euler systems. Weak vs. strong solutions, blow up of
strong solutions of the Euler system. Almost explicit solutions to the stationary problem. Well
posedness theory – the state-of-the-art, compensated compactness vs. convex integration.

Relevant reference material: Abbatiello and EF [1], De Lellis and Székelyhidi [8], EF and
Novotný [15], Gallavotti [17], Tartar [19]
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2 Lecture 2: Stability and numerical analysis: Lax equiv-

alence principle

Consistent approximation. A priori estimates and stability. Asymptotic limit of consistent approx-
imations. Generalized solutions – weak, measure–valued and beyond. Lax equivalence principle in
the context of nonlinear problems. Convergence of consistent approximations.

Relevant reference material: DiPerna and Majda [9], DiPerna [10], EF and Hofmanová
[12], EF, Karper, Pokorný [13], EF and Lukáčová [14]

3 Lecture 3: Method of averaging

Examples of averaging: Ergodic theory, Banach Sachs/Komlos theorems, Young measures. (S)-
convergence and its applications in the analysis of weakly converging consistent approximations.
Global and stationary solutions.

Relevant reference material: Balder [2], EF [11], Komlós [18]

4 Lecture 4: Asymptotic behaviour of solutions for large

time

Long time behavior of solutions of the Euler system. Semigroup selection and admissibility criteria.
Statistical solutions. Long time behavior of the Navier–Stokes system, asymptotic compactness
and attractors.

Relevant reference material: Breit, EF, Hofmanová [4], Cardona and Kapitanskii [5], EF
and Pražák [16]
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