导航
学术报告|
当前位置:首页  科研  学术报告
报告题目: Algebraic differential independence concerning the Riemann-zeta function and the Euler-gamma function
报 告 人: 王琼燕
报告人所在单位: 北京大学数学科学学院
报告日期: 2022-08-9
报告时间: 15:30-16:30
报告地点: 腾讯会议室 622 901 395 密码 200433
   
报告摘要:

王琼燕    北京大学数学科学学院

报告人简介:北京大学数学科学学院博士后,博士毕业于山东大学。研究兴趣主要在复分析,复动力系统,包括值分布理论,L-函数等领域。


摘要:

In this talk, we present several recent results on the research of the algebraic differential independence concerning the Riemann-zeta function and the Euler-gamma function, difference independence of the Euler gamma function. We extended the result that does not satisfy any non-trivial algebraic differential equation whose coefficients are polynomials in over the field of complex numbers, which is proved by Li and Ye. We also established a sharp version of the difference analogue of the celebratedtheorem concerning the differential independence of the Euler-gamma function.


报告时间:2022年8月9日 15:30 - 17:30

报告地点:腾讯会议:622901395

邀请人:王珺


海报:Algebraic differential independence concerning the Riemann-zeta function and the Euler-gamma function.pdf

   
本年度学院报告总序号: 507

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465