Presentation Name: | Soliton resolution for the sine-Gordon equation |
---|---|
Presenter: | 陆冰滢 博士 |
Date: | 2021-08-18 |
Location: | 腾讯会议 ID: 525 721 484 |
Abstract: | In this talk, we study the long-time dynamics and stability properties of the sine-Gordon equation f_{tt}−f_{xx}+/sin f=0. Firstly, we use the nonlinear steepest descent for Riemann-Hilbert problems to compute the long-time asymptotics of the solutions to the sine-Gordon equation whose initial condition belongs to some weighted Sobolev spaces. Secondly, we study the asymptotic stability of the sine-Gordon equation. It is known that the obstruction to the asymptotic stability of the sine-Gordon equation in the energy space is the existence of small breathers which is also closely related to the emergence of wobbling kinks. Combining the long-time asymptotics and a refined approximation argument, we analyze the asymptotic stability properties of the sine-Gordon equation in weighted energy spaces. Our stability analysis gives a criterion for the weight which is sharp up to the endpoint so that the asymptotic stability holds. |
Annual Speech Directory: | No.214 |
220 Handan Rd., Yangpu District, Shanghai ( 200433 )| Operator:+86 21 65642222
Copyright © 2016 FUDAN University. All Rights Reserved