Presentation Name: | A quick numerical trip to spherical t-designs |
---|---|
Presenter: | 安聪沛 教授 |
Date: | 2021-01-15 |
Location: | 腾讯会议ID: 187364013, 密码: 200433 |
Abstract: | We draw our attention on the unit sphere in three dimensional Euclidean space. A set X_N of N points on the unit sphere is a spherical t-design if the average value of any polynomial of degree at most t over X_N is equal to the average value of the polynomial over the sphere. The last forty years have witnessed prosperous developments in theory and applications of spherical t-designs. Let integer t>0 be given. The most important question is how to construct a spherical t-design by minimal N. It is commonly conjectured that N=/frac{1}{2}t^2+o(t^2) point exists, but there is no proof. In this talk, we firstly review recent results on numerical construction of spherical t-designs by various of methods: nonlinear equations/interval analysis, variational characterization, nonlinear least squares, optimization on Riemanninan manifolds. Secondly, numerical construction of well-conditioned spherical t-designs are introduced for N is the dimension of the polynomial space. Consequently, numerical approximation to singular integral over the sphere by using well-conditioned spherical t-designs are also discussed. |
Annual Speech Directory: | No.16 |
220 Handan Rd., Yangpu District, Shanghai ( 200433 )| Operator:+86 21 65642222
Copyright © 2016 FUDAN University. All Rights Reserved