Presentation Name: | Leray's plane stationary solutions have the prescribed limit at infinity in the case of small Reynolds numbers |
---|---|
Presenter: | Xiao Ren |
Date: | 2021-05-13 |
Location: | ZOOM Id: 836 7313 8944,Passcode: 808818 |
Abstract: | In the celebrated 1933 paper, J. Leray proposed the invading domains method to construct D-solutions for the stationary Navier-Stokes flow around obstacle problem. In two dimensions, whether Leray's D-solution achieves the prescribed limiting velocity at spatial infinity became a major open problem since then. In this paper, we solve this problem at small Reynolds numbers. The proof builds on a novel blow-down argument which rescales the invading domains to the unit disc, and the ideas developed in a recent paper [Korobkov-Pileckas-Russo2020], where the nontriviality of Leray solutions in the general case was proved, and [Korobkov-Ren-2021], where the uniqueness result for small Reynolds number was established. The talk is based on a joint work with M.Korobkov |
Annual Speech Directory: | No.113 |
220 Handan Rd., Yangpu District, Shanghai ( 200433 )| Operator:+86 21 65642222
Copyright © 2016 FUDAN University. All Rights Reserved