摘要:The theory of theta functions was regarded as one of the most significant accomplishments of the 19 century by C. L. Siegel, its generalization was suggested in a paper of A. Weil. The dimension of space of generalized theta functions was predicted by Comformal Field Theory.
In this talk, we try to explain an (finite dimensional) approach inspired by the above prediction, and I will start the story from abel's integral.
简介:孙笑涛教授,1992年毕业于中国科学院系统科学研究所,获博士学位,现任天津大学数学学院院长、博士生导师。主要从事代数几何的研究,曾获国家自然科学二等奖1项(唯一完成人),获第十四届陈省身数学奖,获200国家杰出青年科学基金。主要学术成绩:证明任意秩的广义theta 函数空间的分解定理;证明 SL(r)-丛模空间退化的Seshadri-Nagaraj 猜想;发现并证明了Frobenius同态与稳定向量丛之间的重要联系等。
海报