摘要:Consider a rooted infinite Galton--Watson tree with mean offspring number m>1$, and a collection of i.i.d.~positive random variables $/xi_e$ indexed by all the edges in the tree. We assign the resistance $m^d/,/xi_e$ to each edge $e$ at distance $d$ from the root. In this random electric network, we study the asymptotic behavior of the effective resistance and conductance between the root and the vertices at depth $n$. Our results generalize an existing work of Addario-Berry, Broutin and Lugosi on the binary tree to random branching networks.
This is a joint work with Yueyun Hu (Universit/'e Paris XIII) and Shen Lin (Sorbonne Universit/'e) of France.
简介:陈大岳,1963年10月出生,浙江温州人。1983年毕业于复旦大学数学系,1989年在加州大学洛杉矶分校取得博士学位。曾在美国西北大学数学系任教两年,1991年加盟北京大学,1997年晋升为教授。现为北京大学数学科学学院院长、中国数学会秘书长、中国概率统计分会副理事长。研究领域为离散状态空间的马氏过程,特别是交互作用无穷粒子系统和随机环境中的随机游动,取得了若干重要成果,发表论文三十余篇,两度应邀在World Congress of the Bernoulli Society上做报告。2006年获国家杰出青年科学基金。
海报