导航
学术报告|
当前位置:首页  科学研究  学术报告
报告题目: Combining Stochastic Model with Machine Learning for Effective Uncertainty Quantification, Data Assimilation and System Identification
报 告 人: 张寅玲
报告人所在单位: University of Wisconsin Madison
报告日期: 2025-05-30
报告时间: 10:30-11:30
报告地点: 光华东主楼1801
   
报告摘要:

This talk presents two effective mathematical frameworks integrating explainable nonlinear stochastic models with machine learning algorithms to achieve these goals.

The first framework is a causality-based sparse learning algorithm that leverages information theory and DA to discover the underlying nonlinear dynamics with an appropriate UQ using only partial observations. The second framework aims to develop systematic stochastic nonlinear neural differential equations that characterize underlying physics and implement efficient DA and UQ.

海报.pdf

   
本年度学院报告总序号: 1054

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465