导航
学术报告|
当前位置:首页  科学研究  学术报告
报告题目: 系列报告之三: Boundedness of Riesz transforms on manifolds
报 告 人: Prof. XuanThinh Duong
报告人所在单位: Macquarie University
报告日期: 2016-12-30 星期五
报告时间: 9:00-11:20
报告地点: 光华东主楼1801
   
报告摘要:

Let $M$ be a doubling Riemannian manifold. Assume that $/Delta$ is the Laplace-Beltrami operator on $M$.  We also assume that $/Delta$ generates a semigroup with Gaussian upper bound. Then the Riesz transform $T = /nabla /Delta^{-1/2}$ (where $/nabla$ is the Riemannian gradient) is bounded on $L^2(M)$ and its kernel is non-smooth so that $T$ does not belong to the class of Calder/'on-Zygmund operators. we will show that T$ is of weak type (1,1), hence bounded on $L^p(M)$ for $1 < p /le 2$.

海报

   
本年度学院报告总序号: 287

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465