导航
学术报告|
当前位置:首页  科学研究  学术报告
报告题目: An Efficient Gauss-Newton Algorithm for Symmetric Low-Rank Product Matrix Approximations
报 告 人: 刘歆 副研究员
报告人所在单位: 中科院计算数学与科学工程计算研究所
报告日期: 2014-06-12 星期四
报告时间: 15:00
报告地点: 光华东主楼1801
   
报告摘要:
We derive and study a Gauss-Newton method for computing asymmetric low-rank product $XX/zz$, where $X /in/R^{n/times k}$ for $k<n$, that is the closest to a given symmetric matrix $A /in/R^{n/times n}$ in Frobenius norm.   When $A=B/zz B$ (or $BB/zz $), this problem essentially reduces to finding a truncated singular value decomposition of $B$.    Our Gauss-Newton method, which has a particularly simple form, shares the same order of iteration-complexity as a gradient method when $k /ll n$, but can be significantly faster on a wide range of problems.  In this paper, we prove global convergence and a $Q$-linear convergence rate for this algorithm, and perform numerical experiments on various test problems, including those from recently active areas of matrix completion and robust principal component analysis.  Numerical results show that the proposed algorithm is capable of providing considerable speed advantages over Krylov subspace methods on suitable application problems. Moreover, the algorithm possesses a higher degree of concurrency than Krylov subspace methods, thus offering better scalability on modern multi/many-core computers.

 

 

   
本年度学院报告总序号: 68

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465