导航
学术报告|
当前位置:首页  科学研究  学术报告
报告题目: 午间学术报告会(一百九十七):Hausdoff dimension of fractal sets through Selberg, Ihara and Berkovich
报 告 人: 李嘉伦
报告人所在单位: 复旦大学数学科学学院
报告日期: 2025-12-05
报告时间: 12:00-13:00
报告地点: 光华东主楼2201
   
报告摘要:

We study a family of fractal sets, derived from Schottky groups, whose Hausdorff dimensions degenerate to zero. To compute the rate of this covergence, we employ the Selberg zeta function of the associated hyperbolic Schottky surfaces.

We prove that, after a suitable rescaling, these Selberg zeta functions converge to the Ihara zeta function of a limiting finite graph. This graph is associated to the relevant non-Archimedean Schottky group acting on the Berkovich projective line. From this, we also obtain the limiting behavior of resonances for the degenerating family of Schottky groups.

午间学术报告会海报12.5.pdf

   
本年度学院报告总序号: 1045

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465