导航
学术报告|
当前位置:首页  科研  学术报告
报告题目: Geometry of moduli spaces in nonabelian Hodge theory
报 告 人: 黄鹏飞
报告人所在单位: Universität Heidelberg,Postdoctoral Research Fellow
报告日期: 2022-01-14
报告时间: 15:50—16:30
报告地点: 复旦大学光华楼东主楼2201室、腾讯会议755107231
   
报告摘要:

Over a base variety X, nonabelian Hodge theory provides a correspondence among representations of the fundamental group of X, flat bundles, and Higgs bundles over X. The corresponding three moduli spaces (called Betti, de Rham, and Dolbeault, respectively) are also related to each other. In this talk, firstly I will give a brief introduction to this theory as the background setting, then I will report some recent work on exploring the geometry of these moduli spaces, more precisely: (1)Stratification of the de Rham moduli space (some conjectures of Simpson); (2)Dynamical systems on the Dolbeault moduli space; (3)Generalization of Delignes twistor construction; (4)Geometry of the base manifold which parametrizes a family of Higgs bundles.

1.14.pdf

   
本年度学院报告总序号: 392

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465