导航
学术报告|
当前位置:首页  科研  学术报告
报告题目: Optimal expected L2−discrepancy bound for new stratified random sampling
报 告 人: 冼军 教授
报告人所在单位: 中山大学数学学院
报告日期: 2022-07-18
报告时间: 15:30-16:30
报告地点: 腾讯会议ID:385-277-583, 密码: 200433
   
报告摘要:

We introduce a class of convex equivolume partitions, among this class, there exists an optimal partition manner. Expected $L_2-$discrepancy are discussed under these partitions. There are two main results. First, under this kind of partitions, we generate random point sets with smaller expected $L_2-$discrepancy than classical jittered sampling for the same sampling number. Further, among these new partitions, there is the optimal partition for the expected $L_2-$discrepancy. Second, an explicit expected $L_2-$discrepancy upper bound under this kind of partitions is also given.

学术报告海报.pdf

   
本年度学院报告总序号: 499

Copyright © |2012 复旦大学数学科学学院版权所有 沪ICP备042465